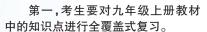


编者按:初三上学期期末考试是各区在寒假前统一组织的一场重要考试。该如何准备这次考试?各科目备考时应注意哪些问题?在期末考试前,本报特邀了多位一线教师,为考生期末备考进行指导。


名师支招:期末各科备考这样做

明确范围 梳理知识体系

北京宏志中学 董恩婵:

期末考试日益临近,对于 初三生来说,本学期期末考试 主要以九年级上册所学内容为 主。为帮助考生更好地准备即 将到来的考试,笔者提供以下 四点复习建议。

对于所有生词,考生要确保能够 正确读写并理解其含义。古诗文背诵 时,考生要做到"滚瓜烂熟",要把其中 难写和易错的字单独圈画出来并重点 练习。文学常识方面,考生要重点记 忆重要的作家作品,力求在课内知识 点上不失分

第二,考生要以教材为纲,以课后 习题为抓手。

语文学习是日常阅读积累的结 晶,广泛的阅读对语文学习大有裨 益。然而,期末考试主要是以本学期 所学知识为考查中心。因此,考生要 以九年级上册语文课本为纲,以课后 习题为抓手,进行有针对性地复习,做 到以不变应万变。

第三,考生要对知识点做到熟能

近年来,语文初中学业水平考试客 观题的分值逐渐降低,主观题分值呈上 升趋势。语文试题更注重在情境中考

查考生对知识的运用能力。一道试题 中往往会考查多个知识点的综合应 用。比如,对联题目往往通过设计一个 场景,要求考生选择适合该场景的对联 内容。这既考查了语法中的短语结构 知识,又考查了诗歌的对仗、押韵知 识。改错题则是将句子放入语段中去 考,既考查搭配不当、成分残缺等语法 知识,也考查上下文的衔接等。对此, 考生既要积累生活常识,又要有针对性 地每天练笔,保持状态,培养洞察力。

第四,考生要信任老师,认真听 讲,总结不同题型的答题方法。

经验丰富的一线教师对初中学考 的题型和答题方法都有非常专业的理 解和积累,会在日常教学中反复讲解 和指导,让考生在学习中少走弯路。 所以,考生一定要充分利用好课堂上

总之,做好九年级上册知识点的 复习是本次期末考试取得好成绩的关 键,也能为将来的初中知识总复习打 下坚实基础。

英语

总结方法 攻克压轴题"难关"

北京市陈经纶中学 朱丽颖:

二次函数因其知识点考查难 度较大,历来是初中学考和本学 期期末考试的压轴题之一。为 此,笔者整理了二次函数章节的 复习要点供考生参考,以便同学 们有效开展期末复习。

数形结合 扎实基础

考生在复习二次函数章节时,应 回顾函数学习的基本思路:首先研究 二次函数的概念,其次利用描点法画 出二次函数的图象,然后再通过图象 研究其性质,最终建立新知与旧知之 间的联系。例如,二次函数与一元二 次方程之间的联系等。

学生要能灵活转换二次函数的多 种表达式,并从不同类型的表达式中 提取图象信息。例如,二次函数的一 般式中,参数a决定了抛物线的开口方 向,a的绝对值决定了抛物线的开口大 小,a与b共同决定了抛物线的对称轴 位置,c则决定了抛物线与y轴的交点 纵坐标。考生应掌握配方法,将二次 函数一般式转换为顶点式,从而确定 抛物线的开口方向、顶点坐标,进而确 定函数的最大值或最小值。

联系实际 构建模型

函数是描述现实世界变化规律的 数学模型。二次函数既源于生活,也 应用于生活。考生应能通过分析实际 问题情境确定二次函数的表达式,并 利用二次函数的图象、性质和最值等 知识解决实际问题。

建立联系 构建框架

对于二次函数的考查往往不是单 一的。在函数的知识框架下,考生应 建立一次函数与二次函数之间的联 系。在初中数与代数领域的知识框架 下,考生应建立二次函数与代数式、方 程、不等式之间的联系。此外,常用数 学思想方法的使用也可以帮助考生解 决问题。例如,数形结合、分类讨论、 化归与转化等。

考生在复习时既要夯实基础、建立 框架、联系实际,还应掌握解决二次函 数综合题的基本思路和系统性方法。

精准施力 聚焦电学知识备考

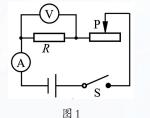
北京市顺义牛栏山第一中学实验

初中物理电学内容是期末考试的 重点,主要包含5个概念和4条基本规 化概念和规律、梳理两类实验、整理电 学专题"的"三步走"策略。

强化概念和规律

考生可以通过制作表格的方式来总结电流(1)、 电压(U)、电阻(R)、电功(W)、电功率(P)、串联和 以此加强对这些概念和规律的理解。

并联电路的电流电压特点、欧姆定律以及焦耳定律,


概念	基本内容				拓展	
	物理量	单位	概念	表达式	扣胶	
	电流 /	A	每秒通过导体横截面的 电荷量	$I = \frac{Q}{t}$	与车流量、水流量对比	
	电压 U	V	形成电流的原因	U	类比水压	
	电阻 R	Ω	导体对电流的阻碍作用	R	相同材料的导体,长的、细的(直径小 电阻大	
	电功 W	J	电流做功,电能转化为其 他形式能	W = IUt	$W = QU$ $W = I^2Rt = \frac{U^2}{R}t$ 电能全部转化成内能 $W = Q$ 电能部分转化成内能 $W > Q$	
	电功率P	W	电流做的功与完成这些 功所用时间的比	$P = \frac{W}{t}$	$P = IU$ $P = I^2R = \frac{U^2}{R}$ 纯电阻电路 $P = UI = I^2R = \frac{U^2}{R}$	
规律	串联电路特点	$I = I_1 = I_2$	$= \cdots = I_n \qquad U = U_1 + U_2 + \cdots$	$R = R_1 + R_2 + \dots + R_n$ $\frac{U_1}{U_2} = \frac{W_1}{W_2} = \frac{P_1}{P_2} = \frac{Q_1}{Q_2} = \frac{R_1}{R_2}$		
	并联电路特点	$U = U_1 = U$	$U_2 = \cdots = U_n \qquad I = I_1 + I_2 + \cdots$	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \qquad \frac{I_1}{I_2} = \frac{W_1}{W_2} = \frac{P_1}{P_2} = \frac{Q_1}{Q_2} = \frac{R_2}{R_1}$		
	欧姆定律	导体中的电流,跟导体两端的电压成正比,跟导体电阻成反比 $I=\frac{U}{R}$			$I\setminus U\setminus R$ 是对同一段电路而言	
	焦耳定律	电流通过导体产生的热量跟电流的平方成正比,跟导体的电阻成正比,跟通电时间成正比 $Q=I^2Rt$			电能全部转化成内能 $W=Q$ 电能部分转化成内能 $W>Q$	

梳理两类实验

在电学部分,有3个必做的测量类实验和3个探 究类实验。

图1所示的电路被称为电学的"黄金"电路,它 在每次考试中几乎都会出现,用于测量电阻以及探 究电流与电压、电阻之间的关系。探究类实验主要 考查考生提出问题、撰写实验步骤、设计数据记录表 格、归纳结论、评估实验等能力。解决这类题的核心 是:识别变量,确定因变量是什么,如何观测,是否需 要转化;自变量是什么,

如何观测,如何改变;控 制不变的量是什么,如 何控制。实验设计、得 出结论和进行评估都应 围绕着改变自变量、控 制不变量和测量因变量 来进行。

整理电学专题 考生在复习电学时,可以整理出以下三类专题。

1.特殊方法测电阻。该专 题的核心是欧姆定律和串联、并 联电路特点的应用。例如,图2 (A) 所示的测电阻电路中,开关 S_1 在断开和闭合两种状态下,电源 电压保持不变,可以通过电路中

的电流和总电阻的阻值乘积相等来列式求解 R_x 。 2. 电路变化及范围。该专题的核心是从不变中 寻找变化。首先明确不变量,然后按照"局部一整体 一局部"的思路,依据欧姆定律和串并联电路的特点, 从电路中局部电阻的变化开始,分析这些局部变化对 电路整体及其他部分的影响。

3. 分析论证及判断。该专题的核心是得出的结 论要有理有据。这类考题主要考查考生的推理论证 能力,要求每一步分析都要写清依据。

道德与 法治

制订计划 迎接开卷考试挑战

5 特别策划

北京市第一〇一中学 季 爽:

北京市2025年初中学考道德与法治 科目笔试将首次实行开卷考。因此,本 学期期末考试对考生而言,不仅具有指 导性意义,更为未来的学习提供了明确 的方向和方法。下面,笔者将结合近年 初中学考的考查趋势、新中考改革方向 及考生实际情况,为大家量身定制道法 学科期末备考策略。

深入研读课本 夯实知识基础

开卷考试并不意味着考生可以忽视课本,相反, 它要求考生更加重视课本内容。考生在复习过程 中,回归课本至关重要。在开卷考试中,考生更应注 重对知识的深入理解和应用。特别是课本中的阅读 感悟、探究分享和相关链接等小节,它们对于加深考 生对知识点的理解至关重要。笔者建议考生每天安 排15至30分钟大声朗读课本,这对于内化和掌握知

用故事讲述课本 深化知识理解

在熟悉课本内容的基础上,考生可以通过讲述故 事的方式来阐述课本知识。这是一种有效深化理解的 方法。道法九年级上册聚焦国情知识,旨在增强考生 对国家的认知和政治认同,提升考生的核心素养。当 考生能够用专业术语讲述中国故事时,这标志着他们 已经实现了知识的融会贯通。在实际操作中,考生可 以通过相互分享或向老师、家长讲述来实践这一方法。

关注时政热点 将知识与新闻相结合

随着对课本知识理解的不断深化,考生应逐步提 升自己运用学科知识深度解读新闻的能力。在备考 期间,考生要特别关注国内,尤其是北京市的热点新 闻。而人民日报公众号的"新闻早班车"栏目就是极

掌握答题技巧 提高解题效率

道德与法治学科的答题有着明确的规律和方 法。对于选择题,考生巧妙运用排除法可以显著提 高答题的准确率和效率。考生要关注那些表述错误 或与题干无关的选项,以及过于绝对的选项,这样有 助于锁定最符合题意的正确答案。对于材料题,考 生需要在阅读材料时圈划关键词,精读设问,培养解 题思维,避免机械地搬运知识点,而是要灵活运用学 科知识进行作答。

关注技巧 提升阅读理解能力

北京市第一〇一中学温泉 校区 花蕾:

在初中学考英语科目试卷中, 完形填空题对于大多数考生来说 较难。为帮助考生在期末英语考 试中更好地应对这一挑战,本文将 为考生提供完形填空的题型分析、 解题指导和学习建议。

解题步骤点拨

1. 抓住首尾, 了解文本(约1分钟): 考生可通过勾划、研读首句和尾句以及 带有中文注释的单词,打开答题窗口,

2. 通读全文,把握脉络(约2分钟): 在答题时,考生可以跳过空格,迅速阅 读全文,把握文章主旨。考生要注意文 中的语篇标志和句中的连词,捕捉关键

3. 瞻前顾后,上下求索(6至8分钟): 考生要学会联系上下文,先易后难,运

用解颢策略从句子、段落、语篇层面解 题,划出语篇标志词,找准关键词、定

4.再读文章,核查答案(约2分钟): 作答完成后,考生可将答案代入空格 处,再次通读全文,确保结构正确、语义 通顺、逻辑合理。

考生要培养自己整体阅读、提炼主题 意义的习惯。在日常练习中,考生可选择 难度适中的完形填空语篇,遮盖住选项, 进行文本填空练习,提升还原文本的能 力。此外,考生还要建立词汇积累本,注 重积累一词多义、熟词生义等内容。

完形填空命题特点和设空规律

	设题方式	例题	体裁与话题	
	前置性 设空 (联系前文)	例: It was an English speech contest. My mother asked me to take part in it. What a terrible idea! It meant I had to in front of all the teachers and students of my school! A.write B. speak C.sing D.dance	体裁: 多为记叙文 话题:	
	后置性 设空 (联系后文)	例: Nobody him in the village. One day he said to them, "I know you <mark>don't like</mark> me" A.believed <u>B.liked</u> C.hated D.knew		
	局部 语篇 理解设空 (联系语篇)	例:Overall, I <u>seized every possible opportunity</u> to myself and to <u>rebuild</u> my life. A.teach B.accept C.judge <u>D.better</u>		
	整体语篇 理解设空 (联系语篇)	例: I work as a volunteer for an organization that helps the poor in Haiti. Recently I took my son Barrett there for a week, hoping to himachieved all I'd expected. Soon he will celebrate his 18th birthday. He will be a man.(最后一句话) A.comfort B.please C.attract D.educate		

①对一词多义、熟词生义、动介词搭配、句型结构、习惯用语的掌握。 ②根据上下文语境,进行理解和逻辑推理的能力。

③运用文化背景知识、生活常识、社会常识进行判断和推测的能力。

责编/安京京 版式/马婷婷 热线/59102870 邮箱/kaoshibao@bjeea.cn