

物理

系统化梳理"静电场"知识网络

北京市第二中学 贾战利

"静电场"是高中物理核心模块之一,也是高考的重难点之一。本文以北京物理等级性考试考题为锚点, 梳理静电场的知识网络,为考生高三一轮复习提供有效路径与方法。

"静电场"单元试题分析

结合近几年北京物理等级考情况可以看出,试题对"静电场"的知识考查呈现三大特点。

知识融合性强。电场常与力学(牛顿运动定律、功能关系)、磁场(复合场)、电磁感应及原子物理(玻尔模型)等模块结合,如2025年将电场力做功与氢原子电离结合,2024年将电容器放电与电磁感应规律结合,2021年将电场加速与磁场偏转结合。

模型典型性突出。等量同(异)种点电荷电场分布、平行板电容器充放电与动态分析、带电粒子在匀强电场中"加速一偏转"模型是高频载体,近几年考题均围绕这些模型展开。

素养要求明确。高考试题侧重考查"模型建构""科学推理""数理结合"三大核心素养。

"静电场"核心知识分析

1. 电场的基本性质、核心概念与公式

表1 如何描述电场力的性质——电场强度与库仑定律

核心概念	库仑定律	电场强度定 义式	点电荷场 强决定式	匀强电场 与电势差 的关系
表达式	$F_{\mu} = k \frac{q_1 q_2}{r^2}$	$E = \frac{F_{\oplus}}{q}$	$E = k\frac{Q}{r^2}$	$E = \frac{U}{d}$
适用 条件	真空中、 点电荷	一切静电场 q 是试探电 荷电量	场源电荷 Q 可看作 点电荷	勾强电场 d 为沿向上 场方向上间的 距离
温馨 提示	各物理量代入公式时均不带正负			

表 2 如何描述电场能的性质—— 电势、电势能与电势差

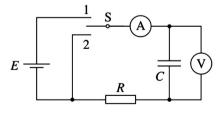
核心概念	电场力做功与电势能的关系	电势差 定义式	电势 定义式	电势差与 电势的关系	
表达式	$W_{AB} = -\Delta E_{P\oplus}$ $= E_{PA} - E_{PB}$	$U_{AB} = \frac{W_{AB}}{q}$	$\varphi_{A} = \frac{W_{PA}}{q}$	$U_{\scriptscriptstyle AB} = arphi_{\scriptscriptstyle A} - arphi_{\scriptscriptstyle B}$	
温馨提示	1.8 物理量代入公式时均考虑带正负。 $2.W_{AB}$ 代表移动点电荷从点 A 到点 B 过程中电场力做功。 $3.E_{PA}$ 代表试探电荷 q 在点 A 具有的电势能。				

2. 静电感应和静电平衡核心规律(静电平衡状态特点)

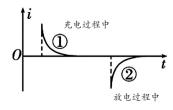
导体内感应电荷场强与外加电场场强等大反向,内部合场强处处为零;导体两侧带等量异种感应电荷,整个导体不显电性;整个导体是等势体,表面是等势面;导体外部电场线垂直于表面,导体内无电场线。

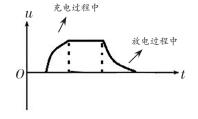
3. 电容和电容器

表3 电容和电容器核心概念与公式


核心概念			匀强电场场强决 定式(需会推导)
表达式	$C = \frac{\Delta Q}{\Delta U} = \frac{Q}{U}$	$C = \frac{\varepsilon S}{4\pi kd}$	$E = \frac{U}{d} = \frac{Q4\pi k}{\varepsilon S}$

- 1.各物理量代入公式时均不带正负。
- 2. 平行板电容器动态分析两类场景: 充电后断 开电源(Q不变)、始终与电源相连(U不变)。


温馨 提示 3.平行板电容器动态分析的逻辑思路:第一步由电容决定式判断 C 的变化。第二步由电容定义式判断 U 或 Q 的变化。第三步利用场强的表达式判断板间场强 E 的变化。第四步根据场强与电势差的关系判断板间某点电势高低的变化(这一步属于更高能力的考查,简单题一般不涉及)。


4. u-q 图像斜率和线下面积的物理意义分别 是什么?

学生实验:观察电容器充、放电现象 ①实验电路:

②实验现象:用电流传感器和电压传感器记录电容器的充放电规律,对应的i-t图像和u-t图像分别是:

4. 带电粒子在电场(或复合场)中运动的核心模型 与方法

①加速模型: $Uq = \frac{1}{2}mv_{\iota}^{2} - \frac{1}{2}mv_{0}^{2}$

②类平抛运动偏转模型:

垂直恒力F方向的匀速直线运动: $x=v_0t$

沿恒力 F 方向的匀加速直线运动: $y\frac{1}{2}at^2$

其中: $a\frac{F}{m}$, $v_y = at$

位移偏转角的正切值: $\tan \alpha = \frac{y}{x}$

速度偏转角的正切值: $\tan \beta = \frac{v_y}{v}$

易得: tan β = 2 tan α

③复合场模型以及解这类问题的关键思路:

受力分析:类比力学相似运动情景,用牛顿运动定律分析状态点。

过程研究:通过动能定理、动量定理列始末状态方程。 体系问题:按连接体思路选研究对象——细节(状态点)用牛顿运动定律,过程分析可结合动能定理、能量守恒、动量定理/守恒,依情境选方法。

"静电场"复习方法与策略

1. 构建知识网络

考生要从"力一能"双主线串联知识,用"三步建模法"突破难题。一是情境建模(抽象实际装置为电场模型)。二是过程分解(拆分运动阶段)。三是公式联动(联立物理原理方程)。

以 2025 年 20 题第(3)问氢原子电离题为例。情境建模:将"氢原子在电场中电离"抽象为"电场力做功使电子动能增加,克服原子能级差"的模型。过程分解:电子经历在电场中加速(电场力做功)→与氢原子碰撞(能量传递)两个阶段。公式联动:电场力做功 $\left(W_{\mathbb{R}}=Eqx\right)$,氢原子电离能 $\left(E_{\mathbb{R}}=-\frac{ke^2}{2r_{\mathbb{R}}}\right)$,其中 $x\leqslant 2a$,

2. 总结易错点

例如,电场强度与电势无直接关联;平行板电容器 动态分析中辨析 Q 不变还是 U 不变;带电粒子在电场中运动时是否考虑重力(如电子、质子一般忽略重力,油 滴、小球一般考虑重力)等问题。

 $r_1 = a$,由功能关系 $W_{e} = 0 - E_1$,联立即可求解。

3. 分层限时训练

考生要先进行单一考点专项训练(如电场强度、电容器),再进行综合题训练(如复合场),最后以高考试题为素材进行限时练习,总结解题模板,提升复习效率。

最后,笔者建议考生在一轮复习中要做到"知识系统化、方法模板化、训练精准化",才能从容应对高考"静电场"考题,实现能力与分数双重突破。